<u>Sequences & Series Practice Sheet (Student Copy)</u>

Praveen Chhikara

1

Let $a_1=1$ and $a_n=a_{n-1}+4$, $n\geq 2$. Then,

$$\lim_{n \to \infty} \left[\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots + \frac{1}{a_{n-1} a_n} \right]$$

is equal to _____

2

Let $S_n=\sum_{k=1}^n \frac{1}{k}$ and $I_n=\int_1^n \frac{x-[x]}{x^2} \ dx$. Then, $S_{10}+I_{10}$ is equal to

(A)
$$\ln 10 + 1$$

(B)
$$\ln 10 - 1$$

(C)
$$\ln 10 - \frac{1}{10}$$

(D)
$$\ln 10 + \frac{1}{10}$$

3

Consider the power series $\sum_{n=0}^{\infty} a_n z^n$, where $a_n = \begin{cases} \frac{1}{3^n} & \text{if } n \text{ is even} \\ \frac{1}{5^n} & \text{if } n \text{ is odd.} \end{cases}$

The radius of convergence of the series is equal to _____

4

The radius of convergence of the power series $\sum_{n=0}^{\infty} 4^{(-1)^n n} z^{2n}$ is ______

Let $x_0 = 0$. Define $x_{n+1} = \cos x_n$ for every $n \ge 0$. Then

- (A) {x_n} is increasing and convergent
- (B) $\{x_n\}$ is decreasing and convergent
- (C) $\{x_n\}$ is convergent and $x_{2n} < \lim_{m \to \infty} x_m < x_{2n+1}$ for every $n \in \mathbb{N}$
- (D) $\{x_n\}$ is not convergent

6

Let $\{a_n\}$ be the sequence of consecutive positive solutions of the equation $\tan x = x$ and let $\{b_n\}$ be the sequence of consecutive positive solutions of the equation an $\sqrt{x} = x$. Then

(A) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converges but $\sum_{n=1}^{\infty} \frac{1}{b_n}$ diverges (B) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ diverges but $\sum_{n=1}^{\infty} \frac{1}{b_n}$ converges

(C) Both $\sum_{n=1}^{\infty} \frac{1}{a_n}$ and $\sum_{n=1}^{\infty} \frac{1}{b_n}$ converge (D) Both $\sum_{n=1}^{\infty} \frac{1}{a_n}$ and $\sum_{n=1}^{\infty} \frac{1}{b_n}$ diverge

7

The value of the limit

$$\lim_{n \to \infty} \frac{2^{-n^2}}{\sum_{k=n+1}^{\infty} 2^{-k^2}}$$

is

(A) 0

(B) some $c \in (0,1)$

(C) 1

(D) ∞

8

Let $S = \{x \in \mathbb{R} : x \ge 0, \ \sum_{n=1}^{\infty} x^{\sqrt{n}} < \infty \}$. Then the supremum of S is

(A) 1

 $(B)^{\frac{1}{a}}$

(C) 0

(D) ∞

The series $\sum_{m=1}^{\infty} x^{\ln m}$, x > 0, is convergent on the interval

(A) (0, 1/e) (B) (1/e, e) (C) (0, e)

(D) (1, e)

10

Let $x = (x_1, x_2,...) \in l^4$, $x \neq 0$. For which one of the following values of p, the series $\sum_{i=1}^{\infty} x_i y_i$ converges for every $y = (y_1, y_2,...) \in l^p$?

(A) 1

(B)2

(C) 3

(D) 4

11

Consider the power series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{x^n}{n}$. Then

(A) both converge on (-1,1]

(B) both converge on [−1,1)

(C) exactly one of them converges on (-1,1]

(D) none of them converges on [−1,1)

12

Which one of the following statements holds?

- (A) The series $\sum_{n=0}^{\infty} x^n$ converges for each $x \in [-1, 1]$
- (B) The series $\sum_{n=0}^{\infty} x^n$ converges uniformly in (-1,1)
- (C) The series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges for each $x \in [-1,1]$
- (D) The series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ converges uniformly in (-1,1)

For a sequence $\{a_n\}$ of real numbers, which of the following is a negation of the statement ' $\lim_{n\to\infty} a_n = 0$ '?

- (a) There exists $\varepsilon > 0$ such that the set $\{n \in \mathbb{N} \mid |a_n| > \varepsilon\}$ is infinite.
- (b) For any M > 0, there exists $N \in \mathbb{N}$ such that $|a_n| > M$ for all $n \geq N$.
- (c) There exists a nonzero real number a such that for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ with $|a_n - a| < \varepsilon$ for all $n \ge N$.
- (d) For any $a \in \mathbb{R}$, and every $\varepsilon > 0$, there exist infinitely many n such that $|a_n - a| > \varepsilon$.

14

Which of the following is false?

- A. $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ diverges

 B. $\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$ converges

 C. $\sum_{n=1}^{\infty} \cos \frac{1}{n}$ diverges

 D. $\sum_{n=1}^{\infty} \cos \frac{1}{n^2}$ converges

The value of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is

A. 1

B. 2

C. 3

D. 4.

16

Let $A = \{ \sum_{i=1}^{\infty} \frac{a_i}{5^i} : a_i = 0, 1, 2, 3 \text{ or } 4 \} \subset \mathbb{R}$. Then

A. A is a finite set

B. A is countably infinite

C. A is uncountable but does not contain an open interval

D. A contains an open interval.

17

Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of real numbers such that the series $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ converge. Then the series $\sum_{n=1}^{\infty} a_n b_n$

A. is absolutely convergent

B. may not converge

C. is always convergent, but may not converge absolutely

D. converges to 0.

The limit

$$\lim_{n\to\infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \right) =$$

- A. e
- B. 2
- C. $\log_e 2$
- D. e^2 .

19

Let $\{a_n\}$ be a sequence of real numbers such that $|a_{n+1} - a_n| \leq \frac{n^2}{2^n}$ for all $n \in \mathbb{N}$. Then

- A. The sequence $\{a_n\}$ may be unbounded
- B. The sequence $\{a_n\}$ is bounded but may not converge
- C. The sequence $\{a_n\}$ has exactly two limit points
- D. The sequence $\{a_n\}$ is convergent.

20

Let $\{a_n\}$ be a sequence of real numbers. Which of the following is true?

- A. If $\sum a_n$ converges, then so does $\sum a_n^4$ B. If $\sum |a_n|$ converges, then so does $\sum a_n^2$ C. If $\sum a_n$ diverges, then so does $\sum a_n^3$ D. If $\sum |a_n|$ diverges, then so does $\sum a_n^2$.

The series $\sum_{n=1}^{\infty} \frac{\cos(3^n x)}{2^n}$

- A. Diverges, for all rational $x \in \mathbb{R}$
- B. Diverges, for some irrational $x \in \mathbb{R}$
- C. Converges, for some but not all $x \in \mathbb{R}$
- D. Converges, for all $x \in \mathbb{R}$.

22

A complex number $\alpha \in \mathbb{C}$ is called *algebraic* if there is a non-zero polynomial $P(x) \in \mathbb{Q}[x]$ with rational coefficients such that $P(\alpha) = 0$. Which of the following statements is true?

- A. There are only finitely many algebraic numbers
- B. All complex numbers are algebraic
- C. $\sin(\frac{\pi}{3}) + \cos(\frac{\pi}{4})$ is algebraic
- D. None of the above.

23

How many finite sequences x_1, x_2, \ldots, x_m are there such that each $x_i = 1$ or 2, and $\sum_{i=1}^m x_i = 10$?

- A. 89
- B. 91
- C. 92
- D. 120.

Let A, B, C be three subsets of \mathbb{R} . The negation of the following statement

For every $\epsilon > 1$, there exists $a \in A$ and $b \in B$ such that for all $c \in C$, $|a-c| < \epsilon$ and $|b-c| > \epsilon$

is

A. there exists $\epsilon \leq 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a-c| \geq \epsilon$ or $|b-c| \leq \epsilon$

B. there exists $\epsilon \leq 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a - c| \geq \epsilon$ and $|b - c| \leq \epsilon$

C. there exists $\epsilon > 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a - c| \ge \epsilon$ and $|b - c| \le \epsilon$

D. there exists $\epsilon > 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a - c| \ge \epsilon$ or $|b - c| \le \epsilon$.

25

Let $a_n = (n+1)^{100} e^{-\sqrt{n}}$ for $n \ge 1$. Then the sequence $(a_n)_n$ is

A. unbounded

B. bounded but does not converge

C. bounded and converges to 1

D. bounded and converges to 0.

26

Consider the sequences

$$x_n = \sum_{j=1}^n \frac{1}{j}$$
$$y_n = \sum_{j=1}^n \frac{1}{j^2}$$

Then $\{x_n\}$ is Cauchy but $\{y_n\}$ is not.

Let $x_1 \in (0,1)$ be a real number between 0 and 1. For n > 1, define

$$x_{n+1} = x_n - x_n^{n+1}.$$

Then $\lim_{n\to\infty} x_n$ exists.

28

Suppose $\{a_i\}$ is a sequence in \mathbb{R} such that $\sum |a_i||x_i| < \infty$ whenever $\sum |x_i| < \infty$. Then $\{a_i\}$ is a bounded sequence.

29

Consider the function f(x) = ax + b with $a, b \in \mathbb{R}$. Then the iteration

$$x_{n+1} = f(x_n); n \ge 0$$

for a given x_0 converges to b/(1-a) whenever 0 < a < 1.

30

The inequality

$$\sqrt{n+1} - \sqrt{n} < \frac{1}{\sqrt{n}}$$

is false for all n such that $101 \le n \le 2000$.

 $\lim_{n \to \infty} (n+1)^{1/3} - n^{1/3} = \infty.$

32

Let S be the set of all sequences $\{a_1, a_2, ..., a_n, ...\}$ where each entry a_i is either 0 or 1. Then S is countable.

33

Let $\{a_n\}$ be any non-constant sequence in \mathbb{R} such that $a_{n+1} = \frac{a_n + a_{n+2}}{2}$ for all $n \geq 1$. Then $\{a_n\}$ is unbounded.

34

The series

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$

is divergent.

35

The inequality $\sum_{n=0}^{\infty} \frac{(\log \log 2)^n}{n!} > \frac{3}{5}$ holds.

36

Consider the sequence $\{x_n\}$ defined by $x_n = \frac{[nx]}{n}$ for $x \in \mathbb{R}$ where $[\cdot]$ denotes the integer part. Then $\{x_n\}$

- (a) converges to x.
- (b) converges but not to x.
- (c) does not converge
- (d) oscillates

37

The function $f_n(x) = n \sin(x/n)$

- (a) does not converge for any x as $n \to \infty$.
- (b) converges to the constant function 1 as $n \to \infty$.
- (c) converges to the function x as $n \to \infty$.
- (d) does not converge for all x as $n \to \infty$.

38

The value of the infinite product

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right)$$

is 1.

39

The series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

diverges.

The sum of the series

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{100.101}$$

is

- (a) $\frac{99}{101}$
- (b) $\frac{98}{101}$
- (c) $\frac{99}{100}$
- (d) None of the above.

41

Let f be an one to one function from the closed interval [0,1] to the set of real numbers \mathbb{R} , then

- (a) f must be onto.
- (b) range of f must contain a rational number.
- (c) range of f must contain an irrational number.
- (d) range of f must contain both rational and irrational numbers.

42

The sequence $\sqrt{7}$, $\sqrt{7+\sqrt{7}}$, $\sqrt{7+\sqrt{7}+\sqrt{7}}$, \cdots converges to

- (a) $\frac{1+\sqrt{33}}{2}$
- (b) $\frac{1+\sqrt{32}}{2}$
- (c) $\frac{1+\sqrt{30}}{2}$
- (d) $\frac{1+\sqrt{29}}{2}$

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

- (a) converges but not absolutely.
- (b) converges absolutely.
- (c) diverges.
- (d) none of the above.

44

Let $u_n = \sin\left(\frac{\pi}{n}\right)$ and consider the series $\sum u_n$. Which of the following statements is false?

- (a) $\sum u_n$ is convergent.
- (b) $u_n \to 0$ as $n \to \infty$.
- (c) $\sum u_n$ is divergent.
- (d) $\sum u_n$ is absolutely convergent.

45

Define $\{x_n\}$ as $x_1 = 0.1$, $x_2 = 0.101$, $x_3 = 0.101001$,...... Then the sequence $\{x_n\}$

- (a) converges to a rational number.
- (b) converges to an irrational number.
- (c) does not converge.
- (d) oscillates.